
IJAICT Volume 5, Issue 12, December 2018
 ISSN 2348 – 9928

 Doi:01.0401/ijaict.2015.04.02 Published on 05(12) 2018

Corresponding Author: Mr. Mir Ahmed Ali, Muffakham Jah College of Engineering and Technology, India. 997

HOW MAPREDUCE CAME INTO BEING: A SURVEY

Mr. Mir Ahmed Ali
Assistant Professor, Department of CSE,

Muffakham Jah College of Engineering and Technology,
Hyderabad, Telangana, India

Abstract— In this paper , we are giving a brief review on
MapReduce which is a distributed programming paradigm proposed
by Google in order to write applications which can process either
small or large data sets. Moreover we will see advantages and
disadvantages of MapReduce.

Keywords— Map,Reduce, Job,Task,Cluster, Hadoop, Distributed
Computing, Cluster Computing

I. INTRODUCTION

Data are the values of qualitative or quantitative variables
belonging to a set of items [1]. Examples of qualitative data are
country of origin, treatment, gender and that of quantitative data
is height, weight, blood pressure. If you want to perform any
computation on the data, then the data is loaded into Main
Memory and an algorithm is made to run by CPU which will
access the data from the Main Memory. These algorithms are
written using Machine Learning and statistics. But, if the data is
too big and doesn’t fit in the memory, then the concept of data
mining comes into picture. A classical data mining algorithm
gets portion of data into main memory from disk, process the
data in the form of batches and writes results to the disk. But, if
the size of the file is as big as 200TB and if the algorithm used is
classical data mining algorithm then just to read 200TB of data
from a disk, it roughly takes 46 days which is a very long time
and is unacceptable. So, we need a better solution. The solution
is splitting data into chunks and distributing these chunks into
multiple disks, read the data parallely and allocate it to multiple
CPU that is thousand disks are made to compute in parallel and
the time taken is just an hour, which is an acceptable time. This
is where cluster computing comes.

1.1 Cluster Computing Architecture

Fig 1: Cluster Computing Architecture

In cluster computing we have racks as shown in figure 1,
consisting of commodity linux nodes. These nodes are connected
by a switch which is a giga-bit switch whose bandwidth is
1GB/sec and each rack may contain 1 to 64 nodes Collection of
racks is known as Data Center which is used for storing and
mining large data sets. But our problem has not yet solved as it
has its own challenges as discussed below:

1.1.1 Node failure
As discussed, since nodes are made of commodity hardware,
they are prone to failure. A single node works upto 3 years that
is 1000 days and once in 1000 days if a node fails then there is
no problem. Likewise, if we have 1000 servers in a cluster and if
anyone server fails in a day then it works out. But, if we have
million servers in a cluster and 1000 of them will fail per day,
then there is a problem which must be fixed. Now, let us
consider about data residing in a node. If node fails, then data
cannot be retrieved. In short, we are not able to achieve
persistency. In another case, during computation, if node fails
then again in this architecture we have to restart computation.
So, we have to find a new architecture that should hide the
failure and also make the computation complete though the node
is failed.

1.1.2 Speed of Movement of Data
The second problem is during computation, if we have to move
data between racks then it may lead to bottleneck, though the
speed of backbone switch is more than 2GBps and speed
between the racks is at most 1GBps. In case of complex
computation, we require more data and in above scenario slows
down the computation. So, we need a framework that increase
the performance.

1.1.3 Programming used
The third problem is the programming used that is distributed
programming is hard. Even sophisticated programmers face
difficulty while writing programs as they have to keep off race
condition and various kind of complication. So, we require a
solution that hides most of the complexity of distributed
programming and write algorithm that can mine large data sets.
So, the solution to all the above problems is MapReduce. Map
Reduce solves all the above mentioned three challenges:

© 2018 IJAICT (www.ijaict.com)

Corresponding Author: Mr. Mir Ahmed Ali, Muffakham Jah College of Engineering and Technology, India. 998

1. The problem of persistence is solved by creating
multiple copies of same data and the problem of
availability is solved by storing on multiple nodes that
is if any one node fails, data is still available on
another node.

2. Instead of moving data from disk to CPU, MapReduce
framework moves computation to data and this
minimize the bottle neck problem.

3. MapReduce provide simple programming model that
hides complexity.

II. LITERATURE SURVEY ON MAPREDUCE

A concept of MapReduce is inspired from Map and Reduce
primitives present in functional languages [3] like Lisp. The
most popular implementation is the one introduced by Google in
the year 2004, which utilizes large clusters of commodity
computers connected with switched ethernet. Since Google
MapReduce is a proprietory one and is not available to public,
other implementations which are opensource and available to
public are DISCO written in Erlang and the most popular
Apache Hadoop and the next most popular is Elastic MapReduce
by Amazon.

2.1 Redundant Storage Infrastructure
This concept is provided by Distributed File System which
stores multiple copies of same data around clusters. In short DFS
provide global file namespace, redundancy and availability. The
most popular implementation of DFS are Google File System
(GFS) and Hadoop Distributed File System(HDFS). As
discussed above, when an input file comes and stores into DFS,
it is divided into chunks and these chunks are distributed among
multiple machines and these machines are called as Chunk
Server. The replicas of each chunk is made and distributed over
multiple chunk server in a way that the original copy and replica
copy are not present on same machine. These chunk servers
behave as compute server and the computation is send to the
chunk present in the chunk server rather than moving data and
by doing this we are avoiding unnecessary movement of data.

2.2 Components of DFS

2.2.1 Chunk Server

In Chunk Server, each file is split into contiguous chunks of
size ranging from 16MB to 64MB. Each chunk is either
replicated twice or thrice, but most oftenly thrice and these

chunks are kept on different servers and one of these replicas
of three chunks is kept on an entire different rack and this is
done if all things are kept in same rack and if entire rack or
switch fails, then it gets inaccessible.

2.2.2 Master Node

In HDFS, it is known as NameNode. It is a node that
maintains metadata that keeps tracks about information of
location of each file that if file1 is divided into four chunks
then metadata contains information about location of each
chunk and its replicas. It must be known that Master Node
itself is replicated otherwise it becomes single point of
failure. In HDFS, the replicted master node is known as
Secondary Name Node.

2.2.3 Client Library

When a client(algorithm) wants to access a file(data), it
contacts Master and find chunk server that stores chunks and
once this information is found, the clients are connected to
chunk Server and for further access to data, it need not
contact Master Node.

In general, MapReduce Environment takes care of

i. Partitioning of the input data
ii. Scheduling the program execution across set

of machines
iii. Performing group by key step
iv. Handling node failures
v. Managing required inter-machine

communication
As discussed above, whenever an input file comes, it is given to
Job Tracker[2] that is shown in figure 2, whose job is to divide
the input file into chunks and its replicas and to distribute them
among multiple different servers and to maintain this location
information into a repository known as Metadata.

Now, the master schedules the input file which is in the form of
chunks to Task Tracker. Now Task Tracker internally invokes
map() function that contains custom logic. The number of Task
Tracker present are equal to number of chunks of an input file.
These Task Trackers works in parallel. The map() function takes
input as key-value pair and produces a list of intermediate key-
value pair. On completion of a map task, its responsibility is to
send the location and size of the file that contains intermediate
key value pair to Master. In short, after completion of all map
task, their intermediate file is forwarded to Master. Now it is the
Master that forwards this file to appropriate Reducer. It must be
remembered that in a single cluster, we have only one Reducer.

IJAICT Volume 5, Issue 12, December 2018

© 2018 IJAICT (www.ijaict.com)

 ISSN 2348 – 9928
 Doi:01.0401/ijaict.2015.04.02 Published on 05(12) 2018

Corresponding Author: Mr. Mir Ahmed Ali, Muffakham Jah College of Engineering and Technology, India. 999

Now it’s the responsibility of Reducer to combine or group all
intermediate files of Mapper(Technically known as Task
Tracker) into one unit and stores into local file system and to
perform computation that is now reduce() function is called that
contains custom logic which produces final results.

Fig 2: Map Reduce Architecture

 To increase the efficiency of Reducer, an intermediate step is
introduced that is the output of the Mapper, now is given to
Combiner instead of Reducer. The combiner then invokes a
combine () function that contains the custom logic. The output of
the combiner is then forwarded to Reducer. Now let us
understand how the MapReduce framework which handles the
problem of node failures. It is the responsibility of Master to
periodically ping the Mappers to find whether they are alive or
not. And this happens by making Mappers to send a heartbeat
signal every three seconds. But, in some case if Mapper does not
give heartbeat signal till 30 seconds, then the Job Tracker comes
to conclusion that Mapper is dead or working slowly and takes a
decision to hand this task to nearest Mapper. But, if Mapper
fails, the work done by Mapper, whether it is either started or
half completed or full completed, is not taken into consideration
and a nearest Mapper is selected and the same task is given from
starting. But, if this happens in case of Reducer, the completed
tasks are not reseted, but the uncompleted tasks are reseted and
are given to the another Reducer. But, if Master fails then it is
the secondary master that takes the responsibility. But, if both
fails, then entire map reduce task is aborted and the client is
notified.

Now let us understand the concept of MapReduce with the help
of an example as shown in figure 3 where we have a 1TB file
that consists of million words and we have to find a specific
word and its count.

Fig 3: Example of Map reduce

Advantages:
The following are the advantages of MapReduce over the
predecessors:

1. Load Balancing
2. Efficient and Reliable distributed data storage
3. Easy to use as most of the work is done by daemons

and the responsibility of the programmer is just to write
code for map function and reduce function

4. Its flexible as MapReduce can work with any type of
data and any type of storage layers like Big Table and
so on.

5. Its highly fault tolerant as it works inspite of average
1.2 failures per job analysis.

Limitations:
1. Doesn’t support languages like SQL and any query

optimization techniques.

IJAICT Volume 5, Issue 12, December 2018

© 2018 IJAICT (www.ijaict.com)

 ISSN 2348 – 9928
 Doi:01.0401/ijaict.2015.04.02 Published on 05(12) 2018

© 2018 IJAICT (www.ijaict.com)

Corresponding Author: Mr. Mir Ahmed Ali, Muffakham Jah College of Engineering and Technology, India. 1000

2. Since MapReduce is scheme free and index free, it has
to parse each input and convert to objects for data
processing that degrades performance.

III. CONCLUSION

The future versions of Map Reduce should support SQL as it is
basic language to work with DBMS. Moreover the concept of
parsing input to be given to some daemons so that performance
can be increased.

References

[1] MapReduce Online By Tyson Condie, Neil Conway, Peter Alvaro, Joseph

M. Hellerstein from UC Berkeley and Khaled Elmeleegy, Russell Sears

from Yahoo! Research

[2] Use of MapReduce for Data Mining and Data Optimization on a Web

Portal by Christopher A. Moturi and Silas K. Maiyo ,School of Computing

and Informatics , University of Nairobi ,Kenya.

IJAICT Volume 5, Issue 12, December 2018
 ISSN 2348 – 9928

 Doi:01.0401/ijaict.2015.04.02 Published on 05(12) 2018

